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Abstract

This paper presents a new consistent splitting scheme for the numerical solution of incompressible Navier–Stokes flows;
allowing to consistently decouple the computation of velocity and pressure. The scheme is not a pressure-correction or
velocity-correction scheme, and does not display the splitting error in pressure associated with these fractional step meth-
ods. The (linearized) momentum equations are first solved based on an explicit treatment of the pressure, resulting in an
advection–diffusion problem for each velocity component. A least-squares projection is used to numerically solve the
advection–diffusion problem. Next, a div–curl problem is solved to make the velocity field solenoidal. This step is also han-
dled by a least-squares projection. Finally, a pressure Poisson problem is solved to obtain the pressure field induced by the
solenoidal velocity field. This is done by solving the weak Poisson problem by a Galerkin projection or alternatively by
solving the strong Poisson problem by a least-squares projection. At each stage we only see coefficient matrices with a sym-
metric positive definite structure, and use matrix-free (preconditioned) conjugate gradient methods to numerically solve for
the velocity and pressure fields. High-order C0 spectral basis are used to span the finite element spaces. A verification
benchmark shows optimal algebraic convergence rates in time for the velocity, pressure, and vorticity. The scheme is fur-
ther verified by simulating the two-dimensional unsteady flow past a circular cylinder up to moderately high Reynolds
numbers.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A major difficulty in the numerical solution of the (un-split) incompressible Navier–Stokes equations is
proper velocity–pressure coupling via the incompressibility constraint. This coupling is well embodied in weak
form Galerkin formulations, where the pressure is readily identified as a Lagrange multiplier enforcing the
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incompressibility constraint. However, at the discrete level, the velocity and pressure cannot be approximated
independently due to their form of coupling and their approximation spaces must be chosen such that they sat-
isfy a strict compatibility condition [3] (i.e. an inf–sup condition). On the other hand, least-squares formulations
for incompressible flows circumvent the inf–sup condition [10], but do not naturally allow for a strong velocity–
pressure coupling. The coupling is improved by using a regularized form of the incompressibility constraint [15].

An important aspect of the numerical solution of the incompressible Navier–Stokes equations is that we
can split or segregate the numerical solution of the velocity and pressure fields. When formulated properly,
a split approach could allow a weak form Galerkin formulation to circumvent the inf–sup condition and a
least-squares formulation to avoid the use of a regularized incompressibility constraint. In spite of these
attractive features, the most salient one is that, at each time step, one needs only solve a series of decoupled
elliptic problems for velocity and pressure, making it very efficient for large scale numerical simulations. In this
paper, we focus on developing a split approach for a least-squares formulation.

The numerical solution of the incompressible Navier–Stokes equations using least-squares finite element for-
mulations is among the most popular applications of least-squares methods [10], and has been historically done
using the coupled approach (i.e. using the un-split equations). Spectral element formulations for incompressible
flows using least-squares have been presented by Proot and Gerritsma [16], Pontaza and Reddy [13], and Hein-
richs [6]; where the expected exponential convergence property for smooth solutions has been demonstrated.

A review of split methods for incompressible Navier–Stokes flow is due to Guermond et al. [5], where it is
shown that pressure-correction or velocity-correction fractional step schemes display a splitting error in the pres-
sure. When using second order time stepping, the L2 error in velocity displays the expected convergence rate of
OðDt2Þ while that in pressure is only OðDtÞ. A rotational form of the fractional step schemes [5] is able to improve
the accuracy of the pressure field to OðDt3=2Þ. Yet another approach is the consistent splitting scheme due to
Guermond and Shen [4,5], where optimal OðDt2Þ convergence rates are shown in velocity and pressure for a ver-
ification benchmark. In practical applications, the consistent splitting approach due to Guermond and Shen [4] is
used to post-process the pressure field obtained from a pressure-correction fractional step scheme (cf. [11]).

The objective of this paper is to present a new consistent splitting scheme for the incompressible Navier–
Stokes equations. The splitting scheme is named a ‘‘consistent scheme’’ in that it is not a ‘‘fractional step
scheme’’, and does not display a splitting error in the pressure. The (linearized) momentum equations are first
solved based on an explicit treatment of the pressure, resulting in an advection–diffusion problem for each
velocity component. Next, a div–curl problem is solved to make the velocity field solenoidal. Finally, the pres-
sure Poisson problem with consistent Neumann boundary conditions is solved to obtain the pressure field
induced by the solenoidal velocity field. At each stage we use least-squares projections to develop the finite
element model. In view of the least-squares projection, we only see coefficient matrices with a symmetric posi-
tive definite structure, and use matrix-free (preconditioned) conjugate gradient (CG) methods to numerically
solve for the velocity and pressure fields.

The consistent splitting scheme proposed herein differs from that proposed by Guermond and Shen [4] in
that the div–curl stage to make the velocity field solenoidal is absent in their scheme and that we use least-
squares projections to develop the finite element model. Numerical results using a verification benchmark
show significant improvements in accuracy when using the div–curl stage to ensure a divergence-free velocity
field. When using second order time stepping, the L2 and H1 errors in velocity, pressure, and vorticity show an
‘‘enhanced’’ convergence rate of OðDt2þ4=5Þ.

An overview of the paper is as follows. In Section 2, we present the new consistent splitting scheme. In Sec-
tion 3, we present its least-squares finite element formulation. Section 4 is devoted to numerical examples
showing: (a) the optimal convergence property of the new consistent splitting scheme, (b) good conservation
of mass properties, and (c) the applicability of the scheme to engineering-type problems. In Section 5 we pres-
ent concluding remarks.

2. The consistent splitting scheme

Let X be the closure of an open bounded region X in Rd , where d ¼ 2 or 3 represents the number of space
dimensions, and x ¼ ðx1; . . . ; xdÞ ¼ ðx; y; zÞ be a point in X ¼ X [ oX, where oX ¼ C is the boundary of X with
unit normal n̂. The incompressible Navier–Stokes problem, in un-split form, may be stated as follows:
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Find the velocity uðx; tÞ and pressure pðx; tÞ such that
ou

ot
þ ðu � rÞuþrp � 1

Re
Du ¼ 0 in X� ð0; s�; ð1Þ

r � u ¼ 0 in X� ð0; s�; ð2Þ
uðx; 0Þ ¼ u0ðxÞ in X; ð3Þ
u ¼ usðx; tÞ on Cu � ð0; s�; ð4Þ
where D ¼ r2, Re is the Reynolds number, us is the prescribed value of u on the boundary Cu, and in Eq. (3)
the initial conditions are given. A well posed problem requires r � u0 ¼ 0 in X. If C ¼ Cu, the pressure may
only be determined up to a constant in which case the average pressure is set to zero.

The proposed consistent splitting takes place in three stages. In the first stage, the (linearized) momentum
equations are solved based on an explicit treatment of the pressure, resulting in an advection–diffusion prob-
lem for each velocity component. The resulting velocity field will, in general, not be divergence-free as the
incompressibility constraint is ignored in the advection–diffusion step. In the second stage, a div–curl problem
is solved to make the velocity field solenoidal. In the third and final stage, the pressure Poisson problem with
consistent Neumann boundary conditions is solved to obtain the pressure field that is naturally induced by the
now solenoidal velocity field.

Stage 1: Advection–diffusion step. The first step in the algorithm is essentially an advection–diffusion prob-
lem for the velocity components; it consists of seeking ukþ1 such that
Dukþ1

Dt
þ ðukþ1

H
� rÞukþ1 � 1

Re
Dukþ1 ¼ �rpkþ1

H
; ukþ1jC ¼ ukþ1

s : ð5Þ
Note that the cartesian components of the unknown ukþ1 are fully uncoupled. In Eq. (5) Dukþ1=Dt denotes a
discrete temporal operator, and the starred quantities ukþ1

H
and pkþ1

H
denote velocities and pressure fields that

are extrapolated in time.
For example, for a second order BDF temporal operator Dukþ1 ¼ 1

2
ð3ukþ1 � 4uk þ uk�1Þ, and for a second

order extrapolation in time ukþ1
H
¼ 2uk � uk�1. At start-up (k = 0), we simply use a first order temporal oper-

ator Du1 ¼ u1 � u0, and first order extrapolation in time u1
H
¼ u0. The topic of generating well-posed initial

data u0, p0 such that r � u0 ¼ 0, must be respected. Here we follow the work of Marra et al. [11] to generate
the well-posed initial data. It turns out that the easiest way to generate well-posed initial data is to simply use
the potential flow solution as an initial condition.

Stage 2: Div–curl step. The time advanced velocity field from stage 1 will, in general, not be divergence-free.
To enforce the divergence free constraint, set ukþ1

H
¼ ukþ1, and solve the following div–curl problem for a sole-

noidal ukþ1
r � ukþ1 ¼ 0; r� ukþ1 ¼ r� ukþ1
H
; n̂ � ukþ1jC ¼ n̂ � ukþ1

H
: ð6Þ
Note that in this stage the starred velocity field, ukþ1
H

, no longer denotes a velocity extrapolated in time but is
set to the velocity field obtained from stage 1.

Stage 3: Pressure Poisson step. Given the solenoidal velocity field ukþ1 from stage 2, the pressure field pkþ1 is
obtained by solving the following pressure Poisson problem with Neumman boundary conditions of the div–
curl type
�r2pkþ1 ¼ ukþ1 : ukþ1; �n̂ � rpkþ1jC ¼ n̂ � Dukþ1

Dt
þ ðukþ1 � rÞukþ1 þ 1

Re
r� ðr � ukþ1Þ

� �
: ð7Þ
The pressure Poisson equation is obtained by taking the divergence of the momentum equations and using the
incompressibility constraint to simplify it to the form shown in Eq. (7). The Neumman boundary condition is
obtained by taking the inner product of the boundary unit normal with the momentum equations in its curl–
curl form. The resulting div–curl form of the boundary condition is well known to give an a priori control on
the divergence of the next ukþ1 at the boundaries.

Alternatively, one can solve the weak form of the pressure Poisson equation; which leads to the following
variational problem for the pressure field pkþ1
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ðrq;rpkþ1Þ ¼ � rq;
Dukþ1

Dt
þ ðukþ1 � rÞukþ1 þ 1

Re
r� ðr� ukþ1Þ

� �
8q 2 H 1ðXÞ: ð8Þ
Weak solutions of the pressure Poisson problem may, in general, not coincide with solutions of the strong
pressure Poisson problem in Eq. (7). Here we prefer to solve the strong pressure Poisson problem using a
least-squares formulation, although we also consider solving the weak problem using the Galerkin approach.

3. Least-squares formulation

A least-squares formulation is chosen here to develop the finite element model of the splitting scheme for
the incompressible Navier–Stokes equations described above. The reason for this is that (a) least-squares for-
mulations have been shown to be robust for singularly perturbed advection–diffusion problems (i.e. robust in
the convection dominated limit) [10], (b) least-squares formulations are optimal for div–curl problems [10],
and (c) least-squares discrete problems result in linear algebraic systems with a symmetric positive definite
(SPD) coefficient matrix.

The least-squares formulation is presented for an advection–diffusion problem. As we shall find out, the
least-squares formulation for the equations in all the stages of the splitting scheme are special cases of this
equation. We consider the linear advection–diffusion equation in dimensionless form, which can be stated
as follows:

Find /ðx; tÞ such that
o/
ot
þ ðuH � rÞ/�

1

Pe
r2/ ¼ f in X� ð0; s�; ð9Þ

/ðx; 0Þ ¼ /0ðxÞ in X; ð10Þ
/ ¼ /s on C/ � ð0; s�; ð11Þ
n̂ � r/ ¼ qs on Cq � ð0; s�; ð12Þ
where C ¼ C/ [ Cq and C/ \ Cq ¼ ;, Pe is the Peclet number, uw is the prescribed velocity field, f is the source
term, /s is the prescribed value of / on the boundary C/, qs is the prescribed normal flux on the boundary Cq,
and in Eq. (10) the initial conditions are given.

Although direct application of least-squares variational principles to the advection–diffusion equation is
possible it will result in an impractical least-squares finite element model as we would be required to work with
continuously differentiable (C1-continuous) finite element spaces. We proceed instead by first replacing the
advection–diffusion problem, Eqs. (9)–(12), with its first-order system equivalent:

Find /ðx; tÞ and qðx; tÞ such that
o/
ot
þ ðuH � rÞ/�

1

Pe
r � q ¼ f in X� ð0; s�; ð13Þ

r/� q ¼ 0 in X� ð0; s�; ð14Þ
r � q ¼ 0 in X� ð0; s�; ð15Þ
/ðx; 0Þ ¼ /0ðxÞ in X: ð16Þ
/ ¼ /s on C/ � ð0; s�; ð17Þ
n̂ � q ¼ qs on Cq � ð0; s�; ð18Þ
where q is a vector valued function whose components are the fluxes of /, defined in Eq. (14) and (15) is a curl
constraint to ensure H1 coercivity of the system [10].

A least-squares finite element model, where the least-squares functional is defined in terms of L2 norms
only, and is based on the equivalent first-order system, Eqs. (13)–(15), allows the use of practical and well-
established C0-continuous element expansions. The reduction in regularity requirements of the element
expansions across inter-element boundaries came at the price of introducing additional independent variables,
sometimes termed auxiliary variables. The additional variables imply an increase in cost, but can be argued to
be beneficial as they may represent physically meaningful variables; fluxes in this case.
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Note that the advection–diffusion problem to be solved in stage 1 of the splitting scheme is simply obtained
by replacing the scalar / by a velocity component and by replacing the Peclet number by the Reynolds num-
ber. Also note that the velocity gradients will be directly approximated and will be C0-continuous across inter-
element boundaries. Thus, the vorticity will be C0-continuous across inter-element boundaries and the
evaluation of its curl, r� ðr � ukþ1Þ, is well defined in a finite element discretization.

Further, the Poisson problem in stage 3 is obtained by replacing the scalar / by the pressure and setting
o=ot ¼ 0, uH ¼ 0, and Pe ¼ 1. Finally, the structure of the div–curl vector problem in stage 2 is obtained
(up to right-hand sides), for example, by omitting Eq. (14) and all the terms where the scalar / appears
and setting Pe ¼ 1 and q ¼ u. Note that in stage 2, the right-hand side of Eq. (15) with q ¼ u is non-zero,
cf. Eq. (6).

The L2 least-squares functional associated with the equivalent first order system of the advection–diffusion
problem is
Jð/; q; f Þ ¼ 1

2

D/kþ1

Dt
þ ðuH � rÞ/kþ1 � 1

Pe
r � qkþ1 � f kþ1

����
����

2

0;X

þ kr/kþ1 � qkþ1k2
0;X

 

þkr � qkþ1k2
0;X þ k/

kþ1 � /kþ1
s k

2
0;C/
þ kn̂ � qkþ1 � qkþ1

s k
2
0;Cq

!
;

where k � k0 denotes the L2 norm of the enclosed quantity, and it is implied that the problem will march in time
for k ¼ 0; 1; 2; . . . ;K ¼ s=Dt.

Taking the first variation of the above functional with respect to / and q and setting it to zero yields the
variational form of the problem. We proceed to define a discrete problem by choosing appropriate finite ele-
ment spaces for the scalar / and vector components of q. There are no restrictive compatibility conditions on
the discrete spaces, so we choose the same finite element space for all primary variables. Here we use a C0

nodal spectral basis to span the finite element spaces.
The resulting system of linear algebraic equations can be written as Au ¼ b, where the matrix A is SPD,

sparse, and of size N dof � Ndof , u represents a vector of size Ndof containing all the nodal unknowns, and b

is a vector of size Ndof. Using the fact that the L2 least-squares discrete system corresponds to the normal
equations of a weighted collocation scheme [10,14]; where the collocation points and weights correspond to
the quadrature rule points and weights used to approximate the L2 norm integrals, we rewrite Au ¼ b as
KTWKu ¼ KTWf. Here K contains the collocation residuals and is of size N coll � Ndof , f is a vector of size Ncoll

containing the right-hand sides of the collocation residuals, and W is a square matrix of size N coll � N coll whose
diagonal entries contain the quadrature point weights.

The reasoning behind rewriting the discrete system in this manner is that we can use a suit of CG variants to
solve this problem with much better numerical (finite precision) properties than when using traditional CG on
Au ¼ b. Here we use the CGLS (conjugate gradient least-squares) algorithm of Hestenes and Stiefel [9] or the
LSQR (least-squares QR) algorithm by Paige and Saunders [12] on KTWKu ¼ KTWf, implemented in matrix-
free form with a Jacobi preconditioner. All three algorithms (CG, CGLS, and LSQR) are analytically equiv-
alent but the performance of CGLS and LSQR is much better in finite precision [1,12]. Comparisons of
convergence speed and accuracy when using CG, CGLS, and LSQR on least-squares problems with low
and high condition numbers are well documented in the study by Bjorck et al. [1]. We recommend CGLS,
as it has a lower operation count than LSQR and achieves almost identical accuracy.
4. Numerical examples

4.1. Verification

In this first numerical example we wish to establish the temporal accuracy of the consistent splitting scheme,
which we conjecture; should correspond to the second-order accuracy of the time integration scheme. To this
end we consider a unit square X ¼ ½0:0; 1:0� � ½0:0; 1:0� with Dirichlet velocity boundary data. We take the
exact solution to the incompressible Navier–Stokes equations to be of the form:
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uðx; y; tÞ ¼ p sin2ðpxÞ sinð2pyÞ sinðtÞ;
vðx; y; tÞ ¼ �p sin2ðpyÞ sinð2pxÞ sinðtÞ;
pðx; y; tÞ ¼ cosðpxÞ sinðpyÞ sinðtÞ:

ð20Þ
The prescribed velocity field is, by construction, solenoidal and the source term f of the momentum equations
is such that Eq. (20) is the exact solution. This ‘‘manufactured solution’’ is the one used in the work of Guer-
mond and collaborators [4,5], to establish the temporal accuracy of splitting schemes.

The domain is spatially discretized using a 4 · 4 uniform quadrilateral finite element mesh. In each element
we use 8th order nodal expansions (in each spatial direction), which is sufficient to represent the spatial var-
iation of the analytic solution to within approximately 10�8 in the L2 norm. Therefore any errors higher than
this can be expected to be due to temporal accuracy. For the computations we use the full Navier–Stokes
equations (i.e. with the convection terms) and set the Reynolds number to 100. The exact solution, given
by Eq. (20), is used to prescribe the initial data and Dirichlet velocity boundary conditions on the entire
boundary.

The time evolution of the fields is computed for t 2 ½0; 10� for decreasing time step sizes. The L2 error and
H1 error in velocities, pressure, and vorticity is recorded at t = 5 and plotted in Figs. 1 and 2 as a function of
the time step size in a log–log scale.

A major finding is that, contrary to our expectations, the errors did not decay at an algebraic rate of order 2,
as expected for the second-order accurate time marching scheme. Instead, we see a faster algebraic conver-
gence rate of order 2.8 in the L2 and H1 norms for all field variables. Indeed, we see from Figs. 1 and 2 that
the slope of the convergence curves is close to 3rd order.

At the moment, we are not able to fully explain the increase in convergence rate from the expected OðDt2Þ to
the observed OðDt2þ4=5Þ; but the enhanced convergence rate is certainly welcomed. The observed enhanced
convergence rate may be a result of the sequence of least-squares projections performed on the velocity field,
and not necessarily inherent to the splitting scheme itself. For clarity, we present below the definitions used to
compute the L2 error and H1 error at each time step.
kw� whpkL2ðXÞ ¼
Z

X
jw� whpj2 dX

� �1
2

; ð21Þ

kw� whpkH1ðXÞ ¼
Z

X
jw� whpj2 þ ow

ox
� ow

ox

hp����
����
2

þ ow
oy
� ow

oy

hp����
����
2

dX

 !1
2

: ð22Þ
Δt, time step size
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r
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Fig. 1. Convergence of the velocity, pressure, and vorticity fields at t ¼ 5 in the L2 norm for decreasing time step sizes.
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Fig. 2. Convergence of the velocity, pressure, and vorticity fields at t ¼ 5 in the H1 norm for decreasing time step sizes.
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When the div–curl stage is made absent we observe an increase in the error for all field variables. To show the
effect of removing the div–curl stage in the proposed splitting scheme, we plot in Fig. 3 the time history of the
L2 norm of the divergence of the velocity field with and without the div–curl stage (using Dt ¼ 0:01). We see
that when the div–curl stage is absent, the L2 norm of the divergence of the velocity field is around four orders
of magnitude higher; as there is no explicit constraint that the velocity field remain divergence-free. Similarly,
we show in Fig. 4 the adverse effect of removing the div–curl stage by plotting the L2 error of the pressure field
in time (using Dt ¼ 0:01). When the div–curl stage is absent, the L2 error in pressure is two orders of magni-
tude higher. Clearly, the div–curl stage is vital in the proposed splitting scheme.

We note that the exact same convergence rates and error values were obtained when solving the weak pres-
sure Poisson problem by a Galerkin projection or when solving the strong pressure Poisson problem by a
least-squares projection. However, when using the weak pressure Poisson problem to solve for the pressure
field using a Galerkin projection, the div–curl stage could not be removed to obtain reasonably accurate
results.

To give the reader an idea of the cost associated with time advancing the fields by a single time step using
the proposed splitting scheme, we present in Table 1 the conjugate gradient iteration count associated with
time
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no
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v
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)
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no div-curl stage

with div-curl stage

Fig. 3. Time history of the L2 norm of the divergence of the velocity field with and without the div–curl stage.
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Fig. 4. Time history of the L2 error in pressure with and without the div–curl stage.

Table 1
Conjugate gradient iteration count at each stage of the splitting scheme for a single time step

Dt Advection–diffusion step Div–curl step Poisson step (weak Galerkin) Poisson step (least-squares)

u-velocity v-velocity

0.10 1543 1539 434 230 730
0.05 1338 1342 379 215 661
0.02 1194 1201 294 178 507
0.01 1083 1085 229 96 408

Residual tolerance set to 10�8.
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each stage for selected time step sizes. The residual tolerance for the conjugate gradient algorithm was set to
10�8 for this verification exercise. We see that the most expensive stage is the advection–diffusion step for the
velocity components, and that the number of conjugate gradient iterations till convergence reduces with
decreasing time step size for all stages. We also see that performing the Poisson step using a least-squares pro-
jection is more expensive than using a Galerkin projection for the weak Poisson problem.

4.2. A model problem to test conservation of mass

This is a model problem where a circular cylinder of unit diameter, D, is moving in a narrow channel of
height 1.5D, and is used here to test for conservation of mass. This model problem was originally proposed
by Chang and Nelson [2] to test for conservation of mass using the (steady) Stokes equations. Here we present
x / D

y
/D

-1.0 0.0 1.0 2.0 3.0

-0.5

0.0

0.5

Fig. 5. Partial view of the computational domain and mesh for the model problem to test for conservation of mass.



time

m
/m

in

80 85 90 95 100
0.98

0.99

1.00

1.01

1.02

crown

out

Fig. 6. Time histories of mass flow rates at the crown of the cylinder and outlet of the channel.

1598 J.P. Pontaza / Journal of Computational Physics 225 (2007) 1590–1602
results for unsteady flow governed by the Navier–Stokes equations, to test for conservation of mass in time
using the proposed splitting scheme.

The geometry used by Chang and Nelson [2] is slightly modified here by shifting the upper channel wall by
0.03 units to promote the desired unsteadiness and by moving the outflow boundary 5.0 units further down-
stream to allow the unsteady wake to become well-developed. The finite element mesh consists of 140 quad-
rangles and a partial view is shown in Fig. 5. The boundary conditions are u ¼ 1, v ¼ 0 at the upstream and
lateral boundaries and no-slip boundary conditions, u ¼ v ¼ 0, at the cylinder surface. For the outflow bound-
time

C
D

80 85 90 95 100
12.0

12.2

12.4

12.6

12.8

13.0

13.2

splitting scheme

un-split eqns. [15]

Fig. 7. Time history of drag coefficient. Comparison with drag coefficient time history obtained using the un-split Navier–Stokes
equations [15].
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Fig. 8. Computational domain and mesh for flow past a circular cylinder. (a) Finite element mesh. (b) Close-up view of the element
distribution around the surface of the circular cylinder.



J.P. Pontaza / Journal of Computational Physics 225 (2007) 1590–1602 1599
ary whose unit normal is aligned with the x-axis, the outflow boundary conditions are imposed as ou=ox ¼ 0,
ov=ox ¼ 0 in stage 1 of the splitting scheme, and as p = 0 in stage 3 of the splitting scheme.

The Reynolds number considered is Re = 100. Mass flow rates are computed at the crown of the cylinder,
where the gap between the channel walls and cylinder surface is the smallest, and at the outflow of the channel.

Time histories of the mass flow rates are plotted in Fig. 6 when using a spatial resolution of p-level 6. The
response is plotted for t 2 ½80; 100�, by which time the flow field is well-developed and has reached an unsteady
periodic behavior. The expected response is _mx= _min ¼ 1:0 at all times. Note that the scale on which the mass
flow rates are plotted allows for a maximum deviation of ±2.0% mass loss/gain. The splitting scheme displays
good conservation of mass in time, showing oscillations of ±0.4% mass loss/gain in time at the crown of the
cylinder and ±0.6% mass loss/gain in time at the outlet of the channel. Increasing the spatial resolution to a
p-level of 8 and/or decreasing the time step size did not worsen or improve the conservation of mass response
in time, and the same small mass loss/gains in time were observed.
t = 5.00t = 5.00

t = 10.00 t = 10.00

t = 25.00 t = 25.00

t = 55.00t = 55.00

Fig. 9. Instantaneous vorticity contours at different instants in time for an impulsive start of flow past a circular cylinder. Left column
Re ¼ 100. Right column Re ¼ 103.
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Fig. 7 compares the time history of the drag coefficient on the circular cylinder computed using the pro-
posed splitting scheme with that obtained using the un-split equations; reported in our previous work [15].
We see good agreement between the two responses in terms of amplitude and phase.

4.3. Unsteady flow past a circular cylinder

We consider the two-dimensional flow of an incompressible fluid past a circular cylinder. Having demon-
strated optimal convergence rates in time and good conservation of mass for the proposed splitting scheme,
the focus of this last numerical example is to demonstrate the accuracy of computed pressure metrics and sta-
bility of the formulation with respect to moderately high Reynolds number flow conditions.

The finite element mesh used for the computations is shown in Fig. 8, and is the one used in our previous
work [15] where we reported results using the un-split equations. The size of the computational domain is
taken sufficiently large to preclude unwanted effects on computed flow metrics due to blockage, or location
of inflow and outflow boundaries. The circular cylinder is of unit diameter, with its center at ðx; yÞ ¼ ð0; 0Þ,
and is placed in the rectangular region X ¼ ½�14:5; 36:0� � ½�22:5; 22:5�. The Reynolds number is based on
the free-stream velocity and cylinder diameter.

Simulations were performed for various Reynolds numbers in the range Re 2 ½100; 103�, at a p-level of 6 and
using a time step size of Dt ¼ 0:05. The chosen time step size allows for adequate temporal resolution, resulting
in over 120 time steps per shedding cycle at Re ¼ 100 and over 80 time steps per shedding cycle at Re ¼ 103.
We choose to start the simulations at each Reynolds numbers using an impulsively started flow. We follow the
work of Marra et al. [11] to generate the well-posed initial data.

Although the flow is three-dimensional in nature for Re > 188 [7], a two-dimensional simulation is still of
interest in theoretical fluid mechanics. Flow metrics such as the mean drag and base pressure coefficients are
over-predicted in two-dimensional simulations due to omission of spanwise wake effects with short correlation
lengths.

Fig. 9 shows instantaneous vorticity contours at different instants in time during the impulsive start of the
flow, for Re ¼ 100 (left column) and Re ¼ 103 (right column). At t ¼ 5:0 the flow is symmetric, but as time
progresses it becomes asymmetric due to shear-layer instabilities. As expected, the higher Reynolds number
flow is more susceptible to these instabilities and the shedding begins at earlier times, with a narrower wake,
when compared to the lower Reynolds number flow.
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Fig. 10. Mean drag coefficient vs. Reynolds number for unsteady flow past a circular cylinder. Comparison of our 2-D simulation results
with the 2-D simulation results of Henderson [7] and our 2-D simulation results using the un-split equations [15].
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Fig. 11. Mean base pressure coefficient vs. Reynolds number for unsteady flow past a circular cylinder. Comparison of our 2-D simulation
results with the 2-D simulation results of Henderson [7] and our 2-D simulation results using the un-split equations [15].
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Fig. 10 shows the computed time-averaged drag coefficients and Fig. 11 the computed time-averaged base
pressure coefficients for increasing Reynolds numbers. The reference curve with which we compare our sim-
ulation results represents a smooth fit to the discrete set of two-dimensional simulation data points by Hen-
derson [7], who used a fractional step high-order method to split the Navier–Stokes equations [8]. Alongside
this data, we also plot some of our earlier results [15], using the un-split equations. Overall, our simulation
results using the proposed consistent splitting scheme show good agreement with the reference data over
the range of Reynolds numbers considered.

5. Summary and concluding remarks

We presented a new consistent splitting scheme for the numerical solution of incompressible Navier–Stokes
flows; allowing to consistently decouple the computation of velocity and pressure. Our consistent splitting
scheme differs from others in a major way in that a div–curl stage enforces the divergence-free condition
on the velocity field during the time marching procedure. Numerical results using a verification benchmark
show significant improvements in accuracy when using the div–curl stage in the consistent splitting. When
using second order time stepping, the L2 and H1 errors in velocity, pressure, and vorticity show an ‘‘enhanced’’
convergence rate of OðDt2þ4=5Þ. Numerical results for problems of the inflow/outflow type show good conser-
vation of mass and good accuracy in pressure metrics.
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